20 вопрос на 30 минут. Пользоваться ничем нельзя. Пропускать вопросы нельзя. К тесту допущены все. Попова Нина Николаевна

Каждый отмеченный правильный вариант +3, за неправильный -3. Если переключить вкладку, время в тесте ускоряется. Отправляй что есть, иначе сгорит.

Отметьте все верные факты про технологию CUDA

- CUDA является расширением языка Fortran
- □ CUDA является новым языком программирования на базе C/C++
- Это программно-аппаратная архитектура параллельных вычислений, позволяющая значительно ускорить код с использованием любых GPU
- □ CUDA является расширением стандартных языков Java/C#/Python
- CUDA является расширением стандартных языков C/C++
- Это программно-аппаратная архитектура параллельных вычислений, позволяющая значительно ускорить код с использованием GPU NVidia

Если в последнем пункте "всех GPU NVidia", то скорее неверно - куда на древних не работает

Выберите верные (ое) утверждения (е):

- С/к "Ломоносов" имеет гибридную архитектуру
- Вычислительные узлы IBM Blue Gene/Р имеют двунаправленные связи с шестью соседями
- □ IBM Blue Gene/Р позволяет запускать программы с использованием GPU
- □ Домашний каталог каждого пользователя с/к "Ломоносов" виден на любом вычислительном узле

В основном графические ускорители применяются для:

- Вычислений общего назначения
- □ Написания рекурсивных алгоритмов
- 🖵 Файлового ввода вывода
- Обработки изображений
- □ Работы с базами данных
- Обработки видео

Разностный оператор Лапласа на равномерной прямоугольной сетке

$$(Ly)_{i,j} = \frac{1}{h_1^2} (y_{i+1,j} - 2y_{i,j} + y_{i-1,j}) + \frac{1}{h_2^2} (y_{i,j+1} - 2y_{i,j} + y_{i,j-1})$$

Какова масштабируемость кодов квантовой молекулярной динамики на основе теории функционала плотности в зависимости от количества атомов

Если считать, что N - количество электронов, а M - количество базовых векторов в разложении Фурье, и M пропорционально N

- N
- □ N^4
- □ N^3

	мальный объём доступной памяти достигается при запуске параллельных амм на Blue Gene/P в режиме
	Не зависит от режима запуска
	DUAL
	SMP
	VIN
Какое	свойство процессора наиболее важно для вычислительных задач
	Главное - максимальная теоретическая производительность в Гфлопс-ах
	Иметь высокую пропускную способность подсистемы памяти - память должна успевать предоставлять процессору данные, над которыми он работает
	Обеспечивать широкие возможности SIMD-ификации кода - использование векторизации дает большой реальный эффект
•	Это зависит от конкретного приложения - у всех разные требования
Отмет	ъте все верные факты про вызов данной функции cudaMemcpyAsync(array2,
array1	, count, cudaMemcpyHostToDevice)
	Копируется count байт
	Операция асинхронна, выполняется в потоке stream
	Происходит копирование данных с ГПУ на ЦПУ
	Происходит копирование данных с ГРУ на ГПУ
	Происходит копирование данных из массива array1 в массив array2
	Происходит копирование данных с ЦПУ на ГПУ
•	Операция асинхронна, выполняется в потоке по умолчанию
	Происходит копирование данных из массива array2 в массив array1
	ерный алгоритм разбиения прямоугольной области имеет преимущество над перным вариантом разбиения, поскольку
	позволяет значительно уменьшить объем оперативной памяти, необходимый каждому вычислительному узлу
•	позволяет существенно уменьшить общий объем транзакций в процессе взаимодействия вычислительных узлов
	позволяет существенно уменьшить объем вычислительной работы, который
	должен выполнить каждый процесс
	не обладает ни одним из перечисленных выше свойств
Укажи	те правильный(правильные) ответ(ответы):
	LES моделирует только достаточно крупные вихревые объекты
	Метод прямого численного моделирования (DNS) разрешает все возможные
	пространственные масштабы
	LES моделирует все возможные пространственные масштабы
	Метод прямого численного моделирования (DNS) разрешает только небольшие пространственные масштабы

узел В ■ □ □	16 8 128
Каков О(N^3	порядок сложности алгоритма перемножения плотных прямоугольных матриц?)
квадра 	порядок вычислительной мощности алгоритма перемножения плотных атных матриц? O(n^2) правильного ответа нет O(1) O(n^3) O(n)
st1, st2 строка строка строка	ите все верные утверждения относительно следующего кода, при условии, что сотличны от потока по умолчанию, а ядро меняет массив arr1: 1- cudaMemcpyAsync(arr1, arr2, count, cudaMemcpyHostToDevice, st1); 12- kernel<< <count 256,256,0,st2="">>>(arr1,arr3,count); 13- cudaMemcpyAsync(arr2, arr1, count, cudaMemcpyDeviceToHost, st1); 13- cudaMemcpyAsync(arr2, arr1, arr3,count); 1</count>
st1, st2 строка строка строка	рите все верные утверждения относительно следующего кода, при условии, что 2 отличны от потока по умолчанию, а ядро меняет массив arr1: 1- cudaMemcpy(arr1, arr2, count, cudaMemcpyHostToDevice); 12- kernel<< <count 256,256,0,st2="">>>(arr1,arr3,count); 13- cudaMemcpyAsync(arr2, arr1, count, cudaMemcpyDeviceToHost, st1); 3- ачения элементов массива arr2 после завершения функции в строке3 будут совпадать со значениями элементов массива arr1, полученные после завершения функции в строке2</count>

□ 32

- ядро выполнится только после завершения копирования в строке1
- копирование в строке3 выполнится только после копирования в строке1
- □ Значения элементов массива arr2 после завершения функции в строке 3 будут совпадать со значениями элементов массива arr1, полученные после завершения функции в строке1

Отметьте все верные конфигурации запуска ядра:

- kernel<<<dim3(5,5,1),dim3(32,4),0,0>>>0
- kernel<<<dim3(5,78),dim3(2,5,11),0>>>0
- □ kernel<<<16,dim(1,50,80),0>>>0
- □ kernel<<<1,1,5,-1>>>0
- □ kernel<<<0,45,0,0>>>0

Почему явные итерационные методы успешны для решения задачи на собственные значения на суперкомпьютере Blue Gene/P?

- □ Неявные итерационные методы показывают более низкую точность вычислений
- Существуют эффективные методы распараллеливания перемножения матрицы на вектор с учётом параллельного быстрого преобразования Фурье
- □ Для прямых методов нельзя эффективно использовать параллельное быстрое преобразование фурье

Какой будет архитектура большинства вновь создаваемых суперкомпьютеров? Гибридной

Каким параллелизмом обладает фрагмент программы:

for(i=1; i<=n; i++)

for(j=1; j<=m; j++)

A[i][j] = (A[i-1][j] * A[i][j-1])/2;

- не обладает
- другим
- скошенным
- □ конечным
- □ координатным

Краевая задача:

$$\begin{cases} -\frac{\partial u}{\partial x^2} - \frac{\partial u}{\partial y^2} = f(x, y), & (x, y) \in D, \\ u(x, y) = \varphi(x, y), & (x, y) \in \partial D \end{cases}$$

- 📮 является смешанной краевой задачей для уравнения параболического типа
- является задачей Дирихле для уравнения Пуассона
- □ является задачей Трикоми для уравнения Бицадзе-Самарского
- 🖵 является задачей Неймана для уравнения Лапласа

Какие опции команды sbatch позволяют ограничить количество выделенных GPU-карт при выбранном определенном количестве узлов?

- ☐ -gpu 1
- □ -p gpu 1
- □ -s gpu 0
- никакими, нам будут доступны все GPU-карты, выделенных задаче узлов

Отметьте все верные утверждения про данный запуск ядра:

Kernel << 512, dim3(32,4),0,0>>>();

- □ ядро будет использовать 128 нитей
- Запуск ядра выполнится асинхронно
- ядро будет использовать 256*256 нитей
- ядро будет запущено в потоке по умолчанию
- □ Запуск ядра выполнится синхронно
- □ ядро будет использовать 512 нитей

Отметьте все неверные конфигурации запуска ядра:

- kernel<<<75,0,0,0>>>()
- kernel<<<dim3(5,55,1,1),dim3(32,4),0,0>>>()
- kernel<<<dim3(-11),dim3(1),0>>>()
- □ kernel<<<1,1024>>>()
- □ kernel<<<dim3(13,55,1),dim3(32,5,4),0>>>()

Что является причиной возникновения турбулентности?

- Гидродинамические неустойчивости
- □ Политическая нестабильности на ближнем востоке
- Случайные внешние силы

Что такое число Рейнольдса?

Отношение сил инерции к силам вязкости

Прочее

В kernel размер блока <= 1024 и при этом => 0; Нити = произведение размера грида (10 на размер блока (2). dim 3 создается от 1-3х аргументов, каждый из них uint.

cudaMemcpyAsync(dst, src, size, dir, stream)

Help по sbatch

Это типа help по sbatch

Parallel run options:

- -A, --account=name charge job to specified account defer job until HH:MM MM/DD/YY
- -c, --cpus-per-task=ncpus number of cpus required per task
 - --comment=name arbitrary comment
- -d, --dependency=type:jobid defer job until condition on jobid is satisfied

-D, --workdir=directory set working directory for batch script -e, --error=err file for batch script's standard error --export[=names] specify environment variables to export --export-file=file|fd specify environment variables file or file descriptor to export --get-user-env load environment from local cluster --gid=group id group ID to run job as (user root only) --gres=list required generic resources -H, --hold submit job in held state -i, --input=in file for batch script's standard input -I, --immediate exit if resources are not immediately available --iobid=id run under already allocated job -J, --job-name=jobname name of job -k, --no-kill do not kill job on node failure -L, --licenses=names required license, comma separated -m, --distribution=type distribution method for processes to nodes (type = block|cyclic|arbitrary) -M, --clusters=names Comma separated list of clusters to issue commands to. Default is current cluster. Name of 'all' will submit to run on all clusters. --mail-type=type notify on state change: BEGIN, END, FAIL or ALL who to send email notification for job state --mail-user=user changes -n, --ntasks=ntasks number of tasks to run --nice[=value] decrease scheduling priority by value --no-requeue if set, do not permit the job to be requeued number of tasks to invoke on each node --ntasks-per-node=n -N, --nodes=N number of nodes on which to run (N = min[-max]) -o, --output=out file for batch script's standard output -O, --overcommit overcommit resources -p, --partition=partition partition requested --propagate[=rlimits] propagate all [or specific list of] rlimits quality of service --qos=qos -Q, --quiet quiet mode (suppress informational messages) --requeue if set, permit the job to be requeued -t, --time=minutes time limit --time-min=minutes minimum time limit (if distinct) -s, --share share nodes with other jobs --uid=user id user ID to run job as (user root only) -v, --verbose verbose mode (multiple -v's increase verbosity) --wrap[=command string] wrap commmand string in a sh script and submit

Constraint options:

--contiguous demand a contiguous range of nodes

Optimum switches and max time to wait for optimum

-C, --constraint=list specify a list of constraints

--switches=max-switches{@max-time-to-wait}

-F, --nodefile=filename request a specific list of hosts

--mem=MB minimum amount of real memory

--mincpus=n minimum number of logical processors (threads) per

node

--reservation=name allocate resources from named reservation

--tmp=MB minimum amount of temporary disk -w, --nodelist=hosts... request a specific list of hosts -x, --exclude=hosts... exclude a specific list of hosts

Consumable resources related options:

--exclusive allocate nodes in exclusive mode when

cpu consumable resource is enabled

--mem-per-cpu=MB maximum amount of real memory per allocated cpu required by the job.

--mem >= --mem-per-cpu if --mem is specified.

Affinity/Multi-core options: (when the task/affinity plugin is enabled)

-B --extra-node-info=S[:C[:T]] Expands to:

--sockets-per-node=S number of sockets per node to allocate

--cores-per-socket=C number of cores per socket to allocate

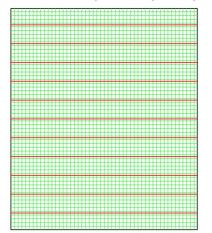
--threads-per-core=T number of threads per core to allocate

each field can be 'min' or wildcard '*' total cpus requested = (N x S x C x T)

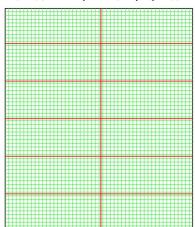
--ntasks-per-core=n number of tasks to invoke on each core

--ntasks-per-socket=n number of tasks to invoke on each socket

Help options:

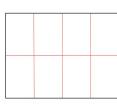

222 -h, --help show this help message -u, --usage display brief usage message

Other options:


-V, --version output version information and exit

Сетки

Одномерное разбиение расчетной области Сетка: $(p^2m) \times (p^2n)$ узлов, p^2 процессов. 1 х p^2 подобластей размера $p^2m \times n$ Общая длина границы: $(p^2-1) \times p^2m$



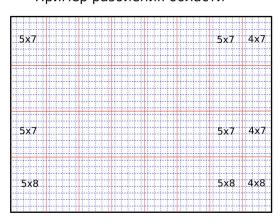
Двумерное разбиение расчетной области Сетка: $(p^2m) \times (p^2n)$ узлов, p^2 процессов. р x р подобластей размера pm x pn Общая длина границы: $p^2(p-1)(m+n)$

A=400 B=300 m=0 n=0

A=100 B=150 m=2 n=1

A=200 B=300 m=1 n=0

A=100 B=75 m=2 n=2



A=200 B=150 m=1 n=1

A=50 B=75 m=3 n=2

Пример разбиения области

 $N_1=39$ $N_2=29$ $M_1=8$ $M_2=4$